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Abstract

Accurate prediction (or simulation) of reservoir performance or contaminant transport in groundwater requires a
realistic geological model representative of the reservoir/aquifer heterogeneity. Geostatistics provides tools for

constructing such complex geological models constrained by di�erent types of available (hard and soft) data and
providing an assessment of related uncertainty. Permeability and ¯ow data are nonlinearly related through the ¯ow
equations. Derivation of permeability models that honor ¯ow response data is typically an inverse problem. This

paper presents a FORTRAN program for generating permeability ®elds conditional to multiple-well single-phase
¯ow rate and pressure data through an iterative inverse technique, called the sequential self-calibration (SSC)
method. The SSC method is geostatistically-based, that is, it generates multiple equiprobable realizations that honor
the input geostatistics of permeability and match pressure data for the given ¯ow rate, under the given boundary

conditions. The unique aspects of SSC are: (1) the master point concept that reduces the amount of computation,
(2) a propagation mechanism based on kriging that accounts for spatial correlations of perturbations and (3) a fast
method for computing all sensitivity coe�cients within a single ¯ow simulation run. Results from running the SSC

code using an example data set are presented. # 1999 Elsevier Science Ltd. All rights reserved.

Code available at http://www.iamg.org/cGEditor/index.htm

Keywords: Inverse problem; Geostatistics; Heterogeneity; Flow simulation; Reservoir/aquifer modeling; Optimization; Sensitivity

coe�cients

1. Introduction

A realistic geological model representative of natural

reservoir/aquifer heterogeneity is critical for accurate

prediction of reservoir performance or contaminant

transport in these reservoirs/aquifers. Geostatistical

techniques are widely used for creating heterogeneous

reservoir/aquifer models for such purpose (Journel,

1989; Deutsch and Journel, 1997). A geostatistical

reservoir/aquifer model should incorporate as much

available information as possible so that the predic-

tions are more site speci®c with less uncertainty. In

practice, the relevant information on reservoir hetero-

geneity may include static (hard or soft) data (such as

conceptual geological data, well, log and core data or

seismic data) and dynamic data (such as well test data,

historical pressure data, fractional ¯ow rate or satur-

ation).
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Honoring static data is usually done through co-

simulation techniques and a large variety of geostatisti-

cal techniques are available for such task (e.g. Alabert,

1987; Xu et al., 1992; GoÂ mez-HernaÂ ndez and Journel,

1993; Zhu and Journel, 1993; GoÂ mez-HernaÂ ndez and

Wen, 1994; Xu, 1995; Wen, 1996). Dynamic ¯ow data

also carry important information, since they are direct

measures of reservoir responses, which are directly re-

lated to the recovery process being used (Deutsch and

Hewett, 1996; Wen et al., 1997b). Integrating dynamic

¯ow data will further improve the accuracy of predic-

tions and reduce uncertainty. However, honoring

dynamic data in geostatistical reservoir models remains

a challenge and is a very active area of research (e.g.

Deutsch, 1992; Sahuquillo et al., 1992; Datta-Gupta et

al., 1995; Reynolds et al., 1995; He et al., 1996; Oliver,

1996; Oliver et al., 1996; Wen et al., 1996, 1997a;

Landa, 1997; Roggero, 1997; Tjelmeland, 1997).

The main di�culty in honoring dynamic data is the

global and nonlinear relation between ¯ow data and

reservoir/aquifer properties through the ¯ow equations.

Thus, matching dynamic data is an inverse problem in

which the ¯ow equations must be solved to establish

the relationship between data and model parameters

(Tarantola, 1987; Sun, 1994). The conventional geosta-

tistical techniques are usually not suited to integrate

directly such data.

A popular method for solving an inverse problem is

to pose it as an optimization (minimization) problem

in which an objective function measuring the mismatch

between observed data and model responses is mini-

mized. The optimization method searches for optimal

model parameters that best match the data, subject to

constraints imposed by the ¯ow equations and par-

ameter variation. A number of inverse techniques have

been developed in the literature (see review report

from Wen et al., 1997b). Some of the limitations as-

sociated with many reported inverse techniques are:

. They are usually computationally intensive and lim-

ited to relatively small and simple models. They

remain infeasible for practical application of realistic

size problems.

. It is di�cult to add in geostatistical constraints, i.e.

they are not geostatistically based.

. No assessment of uncertainty.

. Often assume multi-Gaussian distribution of par-

ameters or linear relationships between data and

model parameters.

The sequential self-calibration (SSC) method is an

iterative geostatistically-based inverse technique that

allows generation of multiple equiprobable realizations

of reservoir property models that match dynamic data,

in addition to typical geostatistical constraints. This

paper describes the FORTRAN computer code for

SSC-generation of permeability models. The program
presented here is limited to single-phase ¯ow data that

would be observed in many groundwater settings and
in primary depletion or before water breakthrough in
petroleum settings. The data we consider are ¯ow rates

Qw(t) and pressures Pw(t) as a function of time, t, at
any arbitrary number of well locations, w = 1, . . . , nw.
Also the current SSC code presented is limited to the

generation of a 2-D permeability model.

2. The SSC algorithm

The SSC algorithm is brie¯y described in this sec-
tion. For more details, readers are referred to

(Sahuquillo et al., 1992; GoÂ mez-HernaÂ ndez et al.,
1997; Wen et al., 1997a). The required input infor-
mation includes:

. geostatistical parameters of permeability ®eld includ-
ing histogram, variogram and other related statistics,

. hard and soft static permeability data, if any,

. initial and boundary conditions for ¯ow,

. time-dependent ¯ow rate Qw(t) and the observed
pressure Pw(t) data at well w at time t.

The goal is to create a permeability model at the
given scale that honor the given geostatistical par-
ameters and static data, and match the pressure data

under the given ¯ow rate and boundary conditions. In

Fig. 1. Flowchart of sequential self-calibration method.
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summary, the main steps in the SSC method include
(see Fig. 1):

. Construct multiple initial permeability realizations
that honor as much static (hard and soft) infor-

mation as possible. The statistics (e.g. histogram and
variogram) at the required scale are needed. A
Gaussian technique such as sequential Gaussian
simulation (see the sgsim program in GSLIB,

(Deutsch and Journel, 1997) has been used in the
examples presented later. Each initial realization is
processed one-at-a-time with the following steps.

. Solve the ¯ow equations using the input well ¯ow
rates Qw(t), initial and boundary conditions. The
bottom-hole pressure PÃw(t) predicted from the simu-

lator is compared to the known well pressures Pw(t).
An objective function is written that measures the
squared di�erence between predicted and observed

pressures:

O �
X
w

X
t

Ww�t��P̂w�t� ÿ Pw�t��2,

with Ww(t) being the weight assigned to di�erent
pressure data according to their accuracy. Matching
of ¯ow data is achieved by minimization of this

objective function. A gradient method is used, which
requires calculation of `sensitivity coe�cients,' that
is, the derivatives of pressure with respect to the per-

meability perturbation:

@Pw�t�
@DKi

i � 1, . . . , N,

where N is the number of blocks in the model. In
practice, the number N of actual block permeabil-
ities being perturbated is reduced to between 1/10

and 1/100 of the number of blocks, by using the
`master point' concept (RamaRao et al., 1995;
GoÂ mez-HernaÂ ndez et al., 1997). Note that the actual

number of master points depends on the correlation
range of permeability. Optimal changes of per-
meability are determined at these `master points'

and then smoothly interpolated by kriging to all grid
blocks.The sensitivity coe�cients are calculated as
part of the solution of the ¯ow equations. The
detailed description of the method for computing

the sensitivity coe�cients is given in Wen et al.
(1997a).

. Determine optimal perturbations of permeability

values at all master locations using a modi®ed gradi-
ent projection method (GoÂ mez-HernaÂ ndez et al.,
1997). This `inner optimization' determines the per-

meability changes that would lead to more closely
matching of the pressure data at all wells at all
times. The mathematical description of this optimiz-

ation procedure can be found in GoÂ mez-HernaÂ ndez
et al. (1997).

. The optimal permeability perturbations at the mas-
ter point locations are smoothly propagated to all
grid cells by kriging.

. Iterate until the objective function is su�ciently
close to zero, or the maximum number of outer iter-
ations has been exceeded. Fewer than 20 iterations

are normally required.

The unique features of the SSC algorithm are: (1)
the concept of master point that reduces the parameter

space to be estimated, (2) the propagation of pertur-
bations through kriging and (3) the fast computation
of sensitivity coe�cients of pressure within one single

phase ¯ow simulation run that makes inversion feas-
ible.
This inversion procedure results in distributions of

permeability that are consistent with the ¯ow data and
spatial geostatistical characteristics of the initial per-
meability models.

3. Implementation details

The ssc program described hereafter tries to bal-
ance the two competing goals of (1) being robust and

easy to use and (2) being ¯exible with respect to input
data and boundary conditions. This source code pro-
vides an advanced starting point for further develop-

ment. Many of the assumptions stated below can be
relaxed.
Consider a rectangular 2-D domain regularly

gridded with square blocks. The e�ect of gravity is
assumed constant, that is, the domain is implicitly
assumed to be a horizontal plane. Porosity is assumed
to be constant; only variations in permeabilty are con-

sidered. The boundary conditions at the four bound-
aries are either constant ¯ow rate, constant pressure,
or a combination of the two. The ¯ow equations

solved by ssc are for single-phase, unsteady-state,
slightly compressible ¯ow.
The ssc code uses natural logarithm of per-

meability, ln(K). Thus the geostatistics of ln(K) (e.g.
histogram and variogram) are required for input.
Permeability is assumed hydraulically isotropic (i.e.
permeability at each cell is a scalar). The master point

locations are randomly selected and their locations
changed after each 3±4 (chosen by users) outer iter-
ations. The number of master points required depends

mainly on the number of wells and the correlation
length of the permeability ®eld: more master points are
required for more wells or short correlation length.

Our experience shows that two to three master points
per correlation range in each direction are su�cient for
most applications (Capilla et al., 1997, 1998).
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Conditioning to static data is performed by includ-

ing the conditioning data points as master points with
their constraint intervals in the optimization being re-
lated to the softness of the data (Wen, 1996; Capilla et

al., 1997).
The ¯ow simulation is performed by imposing the

boundary conditions and the input single-phase ¯ow
rates at the injection and production wells; thus, the
entire rate history of each well must be speci®ed. A

block-centered 5-point ®nite-di�erence method is used
to solve the ¯ow equations. A direct band-matrix sol-
ver is utilized to solve the system of equations for

pressure values at the center of each block. The press-
ure at the well is determined from the block pressure

using Peaceman's formula (Peaceman, 1977). The
objective is to match the measured pressures at the
injection/production wells. Flow simulation provides a

completed record of pressure versus time at all lo-
cations in the reservoir; however, the objective function
only considers the pressures at prescribed locations

and times. There is no requirement for a full pressure
history at each well.

The program iteratively searches for the optimal per-
turbations of ln(K) at master locations and modi®es
the entire input realizations until the pressures are

matched within a speci®ed tolerance or a maximum
number of iterations has been exceeded. A linear re-
lation between pressure and permeability perturbation

is assumed when searching for these optimal pertur-
bations based on the sensitivity coe�cients.

The spreading of perturbations at the master points
to the entire domain is based on kriging. Simple kri-
ging (SK) or ordinary kriging (OK) can be used for

this purpose depending on the number of hard data: if
the number of hard data is small, simple kriging is pre-

ferred, otherwise ordinary kriging is suggested.
The original (input) realizations can be generated by

geostatistical programs such as sgsim in GSLIB

(Deutsch and Journel, 1997) or other codes. The more
closely these input realizations match the true spatial
features, the faster the ssc program will converge to a

solution that matches the pressure data. The histogram
of ln(K) can be reproduced explicitly by performing a

transformation after each modi®cation of the per-
meability ®eld (Xu, 1995).
Adding a smooth correlated perturbation ®eld to

the initial permeability ®eld does not guarantee the
reproduction of the variogram model in the updated

®eld. A posterior check of the variogram is usually
required to ensure that the variogram computed from
the updated realizations is close to the initial realiz-

ations. A better way that can explicitly account for
the variogram model is to propagate the optimal per-
turbations at the master points through conditional

simulation, which is easy to apply, but not included
in this version. The ssc program is written in

FORTRAN 77 standard. The ANSI standard has
been adhered to as closely as possible to ensure

smooth compilation on a variety of platforms.
Program input and output are through ASCII ®les.
Some other minor implementation issues, such as the

selection of the constraint interval at master points,
optimization procedure, and accounting for uncer-
tainty in measured data, are discussed to related

papers (Wen, 1996; Capilla et al., 1997, 1998).

4. Program parameters

This ssc program is a research code suitable for
experimenting with the ideas presented in the related
papers; the program has not been coded for ultimate
speed and it has not been thoroughly debugged. The

ssc program loosely follows GSLIB conventions. The
parameters required for the program are listed next
and shown in Fig. 2:

. Line 1: input ®le containing local well conditioning
data (X-coordinate, Y-coordinate and natural logar-
ithm of permeability, ln(K)). The standard GSLIB/

GeoEAS format is expected (Deutsch and Journel,
1997).

. Line 2: columns in the well data ®le for the X- and

Y-coordinates, permeability values, and the associ-
ated measurement error. The coordinates should
match the grid de®nition (see later) and permeability

should be in units of milli-Darcies (md). The
measurement error is in terms of variance.

. Line 3: number of permeability data and number of

wells with ¯ow data.
. Line 4: index for matching a target histogram given
by the next input ®le.

. Line 5: input ®le containing the input/target ln(K)

histogram.
. Line 6: columns in the ln(K) histogram ®le for per-
meability and possibly declustering weight.

. Line 7: mean (md) and variance (md2) of ln(K) ®eld.
These are used if no input permeability distribution
is speci®ed; they are then taken as parameters for a

lognormal distribution of permeability.
. Line 8: input ®le with reservoir and well data. The
®rst line in this ®le contains porosity, thickness
(feet), viscosity (cp), and compressibility (1/cp). The

following nwell lines are the (i, j) location of the
well and its radius (feet).

. Line 9: input ®le with time (days) and the measured

¯ow rate (STB/day) data at all wells (negative for
production, positive for injection). This ®le may con-
tain missing values. All time steps with measured

pressure data should be included. The ¯ow rate is
assumed constant between two time-step values; a
new value changes the rate.
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. Line 10: input ®le with time, the measured pressure

data (psi), and the associated weight at all wells.

. Line 11: input ®le with index for boundary con-

ditions and the corresponding boundary values

(pressure, psi or ¯ow rate, STB/days): 1 for constant

pressure boundary and 0 for constant ¯ow rate

boundary. The type of boundary for upper, left,

right, and bottom boundaries are speci®ed ®rst, fol-

lowed by their pressure or/and ¯ow rate values.

. Line 12: input ®le with initial pressure ®eld before

production/injection. This input ®le is in GSLIB

grid format (one value per line Ð X cycling fastest,

then Y).

. Line 13: input ®le with initial ln(K) realizations

(obtained from sgsim or some other geostatistical

algorithms). Constant permeability initial realiz-

ations could be used; but, some aspects of uncer-

tainty will be lost and more iterations may be

required for convergence. The input ®le is in GSLIB

grid format (one value per line Ð X cycling fastest,

then Y, then by realization). The program expects

the permeabilities to be in the ®rst column.

Fig. 2. Parameter ®le for ssc program.
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Fig. 3. Reference ln(K) ®eld and corresponding histogram and variogram (solid line for X-direction, dash line for Y-direction).
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. Line 14: total number of realizations in the ®le of in-

itial ln(K) ®eld, the ®rst and last realization numbers
used for updating.

. Line 15: trimming limits used to ¯ag missing values;

permeability, rate, or pressure data with a value less

than the lower limit or greater than the upper limit
are discarded.

. Line 16: index for debugging level. A high number

indicates more information output in the debugging

®le for more serious debugging.

. Line 17: output ®le for debugging messages includ-

ing the input data and their reproduction at each

iteration, the master point locations for each iter-
ation, the sensitivity coe�cients and the optimal DK
values at each iteration.

. Line 18: output ®le for ®nal updated ln(K) per-

meability realization(s). The realizations are written
from the lower left corner and then realization-by-

realization (X cycles fastest, then Y and then realiz-

ation number).

Fig. 4. Flow rate at three wells and corresponding pressure responses computed from reference ®eld.
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Fig. 5ÐCaption opposite



Fig. 6. Pressure responses computed from initial and updated permeability ®elds compared to reference data.

Fig. 5. Three initial permeability realizations and corresponding updated ®elds from SSC inversion. True reference ®eld is shown at

bottom.

. Line 19: output ®le for changes of the objective

function value with iteration number and the ®nal

deviations of simulated and observed pressure data.

. Line 20: output ®le for comparison of observed

pressure data and simulated pressures from initial

and updated ln(K) ®elds.

. Line 21: the size of the model in the X-direction

(number of blocks, center of ®rst block and block

size in feet).

. Line 22: the size of the model in the Y-direction

(number of blocks, center of ®rst block, and block

size in feet).

. Line 23: the random number seed (a large integer)

for generating random master point locations.

. Line 24: the number of master points in the X- and

Y-directions. The 2-D study area is divided into a

regular grid and a random strati®ed sampling

scheme is considered to arrive at the master point lo-

cations. Note that the well locations are also con-

sidered as master point locations.

. Line 25: the number of outer iterations after which

the master point locations are randomly reselected.

. Line 26: a constant factor used for de®ning the con-

straint interval of permeability at master locations in

the optimization.

. Line 27: the maximum number of outer iterations,

the relaxing (dampening) parameter for each outer

iteration and the minimum (target) objective func-

tion for convergency control (the initial objective

function is normalized to start at 1.0).

. Line 28: parameters used for determining the opti-

mal changes of permeability at the master point lo-

cations: (1) minimum iteration number, (2) tolerance

for norm 1 of pressure, (3) the minimum di�erence

of objective function in two consecutive iterations,

(4) the maximum number of times that the di�erence

of objective function in two consecutive iterations is

smaller than the value speci®ed as previous par-

ameter.

. Line 29±33: kriging parameters and variogram
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model to propagate the changes of permeability: (1)
radius of search neighborhood, (2) minimum and

maximum number of data for kriging system, (3)
type of kriging (0 is simple kriging, 1 ordinary kri-
ging), (4) number of nested structures excluding the

nugget e�ect, (5) the nugget e�ect, then, for each
nested structure: (6) the type of structure (1 is
spherical, 2 exponential, 3 Gaussian, 4 power law),

(7) the direction of greatest continuity measured in
degrees clockwise from north, (8) the range in the
direction of greatest continuity and (9) the range in

the direction perpendicular to the direction of
greatest continuity.

5. An example

A simple application of SSC is now presented. A

synthetic reference ®eld is ®rst set up with 20 � 20
grid. The size of each cell is 200 � 200 feet resulting in

the entire ®eld size being 4000 � 4000 feet. The refer-

ence permeability ®eld (ln(K)) is created by the sequen-

tial gaussian simulation (sgsim), see Fig. 3. The input

mean and variance are 3.0 and 2.0, respectively. The

input variogram model is anisotropic spherical with

ranges 1800 and 400 feet along X- and Y-directions.

The histogram and variogram of that reference ®eld

are also given in Fig. 3. Three producing wells with

production rates and the corresponding pressure re-

sponses shown in Fig. 4. The wells are turned on and

o� at di�erent times on purpose to create as much

between-wells interference as possible. Other reservoir

parameters are: porosity f = 0.2, viscosity m = 0.3 cp,

compressibility c = 10ÿ5 1/psi, reservoir thickness

h = 100 feet, initial pressure is constant with p0=3000

psi and well radius is rw=0.3 feet. No-¯ow is assumed

for all boundaries, which is frequently used in pet-

roleum applications. The main features of the reference

®eld are (1) the major spatial correlation is along the

X-direction, (2) the high permeabilities of wells 2 and

3, while well 1 is located in a low permeability area.

Fig. 7. Ensemble averaged permeability ®eld and corresponding standard deviations from 300 initial and updated realizations.
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Fig. 8. Histograms and variograms of true permeability, 300 initial and updated permeability realizations. In variogram plots: solid

lines for X-direction, dash lines for Y-direction.
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Based on the reference histogram and variogram, we
generate initial, unconditional, permeability realiz-
ations using sgsim assuming no permeability data is

available; these realizations are then updated to match
the ¯ow data. Three initial and updated realizations
are shown in Fig. 5. Thirty-two (4 � 8) randomly

selected master points are used and their locations are
updated every three outer iterations. The reference var-
iogram model and histogram are used for the SSC

inversion. The required CPU time for generating one
realization is 3 min using a SGI Indigo workstation.
The spatial features of the updated ®elds are closer to
the reference ®eld when compared to the initial ®elds,

particularly (1) the permeability values around well 1
are always low, while permeabilities around wells 2
and 3 are updated to higher values, (2) wells 2 and 3

are spatially connected by high permeability values.
The matching of pressure data at the three wells for

the initial and the updated permeability ®eld (®rst re-

alization) is shown in Fig. 6; the ¯ow responses in the
initial ®eld are signi®cantly di�erent from the true re-
sponses, while the permeability ®eld updated by SSC

matches accurately the true responses.
As mentioned previously, SSC method is geostatisti-

cally-based, which allows uncertainty to be assessed by

generating multiple equally likely permeability realiz-
ations. All realizations share the same histogram and
variogram, and match ¯ow data. The ensemble results

of 300 initial and updated permeability realizations are
shown in Fig. 7. Integrating ¯ow data provides con-
straints on permeability distribution especially for large

scale trend, allowing reduced uncertainty around well
locations.
The histogram and variogram computed from the

300 initial and updated permeability ®elds are given in

Fig. 8, which indicates the preservation of the geosta-
tistic characteristics in the updated permeability realiz-
ations. The histograms of permeability values at two

selected locations (A and B, see Fig. 7) from the 300
initial and updated realizations are given in Fig. 9,
which indicates more accurate estimation with reduced

uncertainty by integrating ¯ow data, particularly, at
near well area (e.g. location B in Fig. 9).

6. Conclusions

It is essential that reservoir/aquifer models of per-
meability honor dynamic ¯ow data. This is the ®rst
public domain code for the SSC algorithm that allows

Fig. 9. Histograms of permeability values at locations A and B (see Fig. 7) computed from 300 initial and updated realizations.

Bullets are true values from reference ®eld at same locations.
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permeability ®elds to be iteratively adjusted to honor
¯ow rate and pressure data. The ssc program can

handle injection and production data for an arbitrary
number of wells and can use a constant ¯ow rate or
constant pressure boundary conditions.

Key assumptions in this ssc implementation
include (1) the domain of interest is rectangular, 2-D
and ¯at, (2) there is only single-phase ¯ow.

The research program ssc provides a useful starting
point for reservoir engineers and groundwater mode-
lers considering the integration of ¯ow data in their

earth models.

7. Code availability

The source code and the example parameter and
data ®les of ssc used for this paper are available
through anonymous FTP from eluard.stanford.edu,

mundo.upv.es under /pub/ssc, or from ftp.iamg.org.
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